
I Don’t Know What You Did Last Summer: The Missing Role of
Humans in Systems Research

Thomas Davidson
MPI-SWS

Jonathan Mace
MPI-SWS

Abstract
Human-in-the-loop tools are a common �xture of sys-

tems research. Yet the human-facing aspects of these
tools are frequently sidelined: in a survey of 822 recent
systems papers, we �nd that the majority pay no atten-
tion and give no explanation to the human-facing compo-
nents. We propose that the impact and reach of human-in-
the-loop systems research can be greatly enhanced when
exposition is given to the human-facing components,
and propose a concrete checklist of steps for authors to
realize this opportunity.

1 Introduction
Humans are an integral part of building, testing, deploy-
ing, operating, and troubleshooting computer systems.
Modern systems are large, complex, and always-on. They
have given rise to disciplines such as site reliability en-
gineering and a blurring of boundaries between devel-
opment and operations, with devops roles and on-call
duties commonplace in industry.

For increasingly many research problems, humans thus
play a pivotal role as users of the proposed tools and
techniques. Consider, as a running example, distributed
tracing. A key use case of this is debugging anomalous
requests in distributed systems. While distributed tracing
research primarily focuses on how to capture trace data
across machines, taking the technical pieces in isolation
elides a critical step: a human user is ultimately respon-
sible for exploring and interpreting the recorded traces
to intuit an anomaly’s root cause [34].

User interfaces and visualizations thus determine how
e�ectively humans can perform their tasks, of which
many are time-critical and complex, and rely on humans
because automation is intractable. Many tools produce
complex data as output, and interpreting raw data is un-
intuitive and error prone. In distributed tracing, visualiza-
tions have repeatedly surfaced in the research literature
for this reason, from the event timelines in Magpie [2],
to span waterfalls in Dapper [40], to aggregations in
Canopy [16] (cf. Figure 1).

However, visualization and user interaction goes un-
explained and unpresented in the majority of systems
research. Our earlier examples from distributed tracing

are outliers. In §3 we survey 822 research papers pub-
lished over the last 4 years at top systems conferences.
We found that at least 8% of all papers relied on users,
usually in the form of a human user interacting with
system-produced output. However, only around 33% of
these papers show an example, or explain the output their
systems produce. Furthermore, only 14% of the papers
requiring interaction from users give any motivation be-
hind the design of their output. These �gures would be
easier to understand if there was a wealth of systems vi-
sualization literature, however, over the 4 years covered
by our survey out of roughly 800 papers published at
IEEE Vis (the premier visualization conference) only 8
held relevance to systems visualization problems.

This demonstrates a missed opportunity for systems
research: practitioners seek usable tools and therefore
require a solution for the UI and visualization compo-
nents. Without explicit answers, the challenge is pushed
to practitioners, raising the barrier for adoption and hin-
dering potential impact. Within distributed tracing, prior
research on trace comparison [35, 36] has in�uenced
later features in open-source tools [38]; however, long-
standing problems such as accessible visualization for
non-experts [39] have received little attention and re-
main a major pain point for practitioners [21, 39].

The essence of the problem is missing exposition. Sys-
tems research often omits details of UI and visualization,
even when those components exist. By doing so, it for-
goes an opportunity to disseminate new problems and
domain insights to a wider audience of visualization re-
searchers and practitioners. A proof of concept, no matter
how unre�ned, can still have surprising impact: in our
running example, all distributed tracing tools we know
of base their visualizations on the span swimlanes �rst
presented by Dapper [40].

In this paper we seek to answer how systems research
should present the “interface” to human users – that
is, the key concepts, interactions, and expectations that
bridge human users with tools. This notion is analogous
to programmatic APIs that separate concerns and de�ne
mutual expectations between independent software com-
ponents. For human users, the details needed are often
simple, such as prototype screenshots and interaction

1



overviews; yet they make UI and visualization require-
ments concrete, o�er a problem de�nition, and highlight
subtleties and unexpected challenges that can arise.

We outline our solution in §4: a checklist of 5 ques-
tions adapted from the “what, why, how” principle for
designing and presenting visualizations [25]. In following
the checklist, systems researchers methodically (yet con-
cisely) produce a description of the interface to humans,
the problem de�nition for the user-facing components,
challenges already encountered, and insights into possi-
ble visualization approaches. We hope that by shining the
spotlight on visualization and user interaction, we can
increase the impact of systems research by extending its
reach to a broader audience of practitioners, visualization
researchers, and systems researchers.

2 Motivation
2.1 HL-Tools: Human-in-the-Loop Tools
In this paper we are interested in how human-in-the-
loop tools in systems research present their user-facing
visualization and outputs. Our interest in this topic stems
from a simple premise: if a user has to perform a non-
trivial task – e.g. interpreting complex output – then
designing the human-facing components of the tool is
important and non-trivial.

Consider, for example, distributed tracing tools such as
Dapper [40]. These tools aid operators in understanding
and debugging problems in distributed systems. They
produce traces of requests, comprising numerous logging
statements and latency measurements, ordered into a di-
rected acyclic graph. Human operators manually inspect
individual traces, typically aided by a swimlane visualiza-
tion (cf. Figure 1), to gain detailed insight into a request’s
execution.

Other example topics include debugging, modelling,
and performance analysis, at the application, operating
system, and network level. More broadly, we consider
any tools with the following characteristics. Firstly, the
tools exist to aid human users in a high-level task. They
produce output that a human must interpret and reason
about; implicitly this is a non-trivial task for it not to be
automated. Second, this output may be large, structured,
and multi-dimensional; not just a simple line of output,
but data that may be di�cult to consume in its raw form.
Moreover, users may need to correlate the data with other
sources (e.g. a source code base), further compounding
the task complexity.

We use the term HL-Tools to refer to tools that:
• produce complex, potentially multi-faceted data
• require humans to perform a non-trivial cognitive

task, exacerbated by the complexity of the data
• cannot be automated fully, or automation cannot be

fully trusted
• bene�t when human users perform their task faster

(a) Dapper [40] inspired by timelines of Magpie [2] introduced spans, an
abstraction for RPC calls, and visualizes them in a hierarchical timeline.

(b) The open-source Jaeger [14] is inspired by Dapper (cf. 1a) and
incorporates aspects of Canopy [16] (not pictured).

Figure 1: The canonical “swimlane” visualization found in dis-
tributed tracing tools has evolved across multiple works.

and more e�ectively

2.2 Opportunities
Human users are central to motivating HL-Tools, but
thereafter research often focuses on the technical chal-
lenges to making the tool a reality. This is commonplace
in systems research, as we show in §3, but not surprising:
if we cannot overcome the technical challenges then the
tool isn’t possible in the �rst place. In the use cases in-
troduced in §2.1, the research primarily focuses on those
technical challenges. Distributed tracing, for example,
focuses on how to causally relate information across ma-
chines, the instrumentation needed at the system level,
and how to collect and reconstruct recorded information
into traces.

The contribution of research that introduces an HL-
Tool is therefore primarily demonstrating that such a
tool is technically possible. Nonetheless, we argue that
research should be careful not to lose sight of the hu-
man users of these tools. Concretely, there are three
broader opportunities available to research that success-
fully ‘closes the loop’ of the HL-Tool back to its human
users. Namely, doing so increases the potential impact,
by extending the reach of research to practitioners, vi-
sualization researchers, and ultimately back to systems
researchers.
Practitioners. Practitioners are often the intended
audience and motivation for HL-Tools, and thus an im-
portant measure of success is whether research ideas
proliferate into practice. For a tool to be feasible, it can-
not omit the pieces that human users are expected to
interact with.

Consider again distributed tracing. Open-source tools
Jaeger [14] and Zipkin [46] both leverage designs from
Dapper [40] (Figure 1), a tool developed by industrial
researchers, where there is clear impetus for practical

2



tools. By contrast, X-Trace [9], an academic distributed
tracing tool, only introduced its visualization in later
experience reports [8, 33].

Research that “closes the loop” back to human users
is more accessible to practitioners and has the potential
for practical impact. The key to seizing this opportunity
is to reduce uncertainty around what is needed to take a
tool from research prototype to usable in practice. If the
research does not discuss these pieces, then it introduces
doubt about how feasible the tool might be and whether
there exist unmentioned or unsolved challenges. On the
other hand, research that does discuss user-facing out-
puts reduces this uncertainty, even if some challenges are
unsolved. Screenshots or descriptions of prototype UIs
serve both as evidence and as starting points for practi-
tioners, even though these may only be byproducts of the
research. Eliminating uncertainty increases the appeal
to practitioners who may want to implement ideas. This
is even the case for unsolved challenges.
Visualization Research. HL-Tools are human-in-
the-loop solutions to systems problems and a natural
�t for visualization research [25]. Visualization research
can address common challenges shared by di�erent kinds
of data and HL-Tools. An example are dashboards that
report metrics to system operators. Dashboards are com-
monplace in performance monitoring tools, and in their
general form, decision support dashboards have received
signi�cant attention in the visualization literature [37].

In general, HL-Tools wrangle multi-dimensional, multi-
faceted, and structured data – a di�cult research chal-
lenge that receives attention across a wide range of appli-
cation domains [17,20,41]. Of particular note are medical
science and bioinformatics, where a focus on user inter-
action and visualization has spurred development and
adoption of common visualization approaches [27,29,30],
and so much research interest that dedicated visualiza-
tion conferences now exist in this �eld [4]. Similarly,
high-performance computing has received attention due
to the importance of performance optimization and rela-
tively homogeneous systems [13].

In contrast to these other application domains, HL-
Tools receive relatively little direct attention in the vi-
sualization literature. In the past 4 years of IEEE Vis,
the premier visualization conference, we found only 1
HL-Tool paper (CloudDet [43], centered on cloud per-
formance anomalies) and a further 7 papers with broad
similarities (4 software engineering [6, 12, 18, 24] and 3
high-performance computing [19, 26, 42]). Generally, we
have observed that when HL-Tools are presented in visu-
alization literature, it is often by the same group respon-
sible for developing the original HL-Tool. For example,
Spectroscope [35, 36], Pajé [5, 28] and ShiViz [3, 11] each
have tandem contributions in systems and visualization.

We believe this observation demonstrates a missed

opportunity for systems research. Interesting visualiza-
tion challenges exist in HL-Tools, but by default, only
systems researchers have visibility of those challenges.
In the aforementioned examples, researchers were able
to pursue visualization research because they were al-
ready familiar with the HL-Tool and application domain.
For researchers outside of this expert core, a lack of do-
main expertise and a clear problem statement are domain
and abstraction threats to be avoided [25]. Thus when
systems researchers choose not to pursue visualization
research questions, there is little chance that other re-
searchers will pursue them either. Overall, this situation
leads to point solutions for speci�c HL-Tools, but little
technique-driven research that addresses commonalities
across many tools.

To bene�t from the attention of visualization re-
search, HL-Tools must o�er visibility of their challenges.
For systems researchers this entails communicating de-
tails about the human-facing components. Counter-
intuitively, there is substantial value when systems re-
search acknowledges visualization and interaction chal-
lenges that it hasn’t addressed, because this still “closes
the loop” back to human users and exposes details, dif-
�culties, and nuances. It highlights an extant need for
further research and makes it possible for readers to ex-
tract common challenges that transcend individual tools.
Lastly, it provides a starting point for visualization re-
searchers to approach problems without requiring a pri-
ori application domain knowledge.

SystemsCommunity The needs of human-users can
also drive systems research into HL-Tools. In §2.1 we
provided several examples of HL-Tool research. These
examples have the potential to stem further research,
such as that laid out in distributed tracing. These sorts
of problems are often motivated by a need from prac-
titioners who have adopted a tool. In general, HL-Tool
research has �exibility in choosing the data to capture,
and changing use cases can cause researchers to revisit
these tools.

Beyond directly motivating new research directions,
research that closes the loop back to users provides a
foundation for subsequent work to both inherit and en-
hance. Our example in Figure 1, provides an example of
this, where each work builds upon ideas presented in the
previous. In areas such as metric dashboards, common-
place in industry today, systems researchers can assume
basic functionality that is commonplace and provides a
starting point. In many other areas there is a lack of these
initial reference points.

Summary A common theme to all three opportuni-
ties is exposition. Practitioners, visualization researchers,
and systems researchers bene�t when research closes the
loop between the HL-Tool and its human users. These

3



opportunities only become available when systems re-
search provides details of how output from their tools is
presented and how human users are expected to interact
with the tool. By explicitly laying out any challenges pre-
sented by this, and providing solid details, researchers
provide a starting point for future work and adoption in
our three highlighted areas.

3 Survey of HL-Tools
In this section we conduct a survey of 822 research pa-
pers published between 2017-2020 at �ve premier sys-
tems conferences1. The survey design is inspired by the
“what, why, how?” principle of visualization research [25].
The principle helps designers and researchers e�ectively
present and explain their work by asking: what is shown
to the user; why is it shown; and how is it shown. The
questions are prompts for describing three important as-
pects of visualization research: data abstractions (what),
task abstractions (why), and visual and interaction idioms
(how). We are interested in these aspects: given a tool,
can we ascertain the data abstractions relevant to the tool
(what); the tasks expected of users (why); and lastly, ideas
or justi�cation for presenting data to users (how). Over-
all we map these aspects to �ve survey questions. The
survey was conducted by the lead author, whose primary
expertise is visualization, and cross-validated by three sys-
tems researchers2. Table 1 summarizes the results.
Q1:Does the paper present anHL-Tool? (Yes/No/Un-
clear) Of 822 papers surveyed, 8.4% of papers (69) meet
the criteria for HL-Tools outlined in §2.1. 81.4% (669) do
not present an HL-Tool and are not relevant to our sur-
vey; included in this are tools that integrate into some
external system and e�ectively outsource all user inter-
action, e.g. reporting metrics to Prometheus [31]. The
remaining 10.2% of papers (84) could not be categorized.
The main reason a paper cannot be categorized is when
it motivates or automates a problem for human users,
but thereafter does not distinguish the ultimate role of
human users or whether they perform a non-trivial task.
For the rest of the survey, we present results only for the
69 papers that meet the criteria for HL-Tools; for the 85
unclear papers, the answer to all survey questions is “no”.
Q2: Does the paper show a screenshot or a mock-
up of the tool? (Yes/No/Partial) We ask this ques-
tion preemptively because many papers use example
screenshots as a vehicle to explain user-facing outputs.
Of the 69 HL-Tool papers, 33.3% (23) include a screenshot
or mock-up. 49.3% (34) do not include a screenshot or
mock-up. We did not consider it su�cient to indicate
the existence of a visualization (e.g. in an overview di-
agram) without providing further detail. 17.4% (12) do
not include a screenshot or mock-up, but provide some

1ASPLOS, NSDI, OSDI, SIGCOMM, SOSP
2Scripts and results will be made available upon publication

Q1 (n=822) Q2 (n=69) Q3 (n=69) Q4 (n=69) Q5 (n=69)
Yes Unclear No Yes Partial No Yes No Yes No Yes No

% 8.4 10.3 81.3 33.3 17.4 49.3 39.1 60.9 14.5 85.5 14.5 85.5

Table 1: Full Survey Results

depiction of the visualization beyond just its existence.
For example, Seer [10] depicts stylized Gantt charts in
its system overview diagram, thereby indicating a data
abstraction used by its visualization and is marked as
“partial”. Papers that provide an overview diagram with
no indication of the form of output, such as TrackIO [7]
are marked as “no”.

Q3: Does the paper explain the user-facing output?
(“What”) (Yes/No) This asks whether papers describe
the data abstractions output by the tool. A paper can
satisfy this question regardless of including a screenshot;
however, most papers make reference to a screenshot. We
accepted any explanation provided: detailed description
in the text body; a brief �gure caption; or annotations
directly in the screenshot. Most papers only provide one-
line statements or �gure captions. Several, such as tpprof
and SelfStarter [44] [15], provide substantial detail. Of
the 69 HL-Tool papers, 39.1% (27) explain the user-facing
output and 60.9% (42) do not provide any explanation.

Q4: Does the paper motivate the user-facing out-
put? (“Why”) (Yes/No) This question ties the user-
facing output back to the tasks the user is expected to
perform. We look for an explanation of why the speci�c
output is the right �t for the task at hand. For example,
Rex [23] is a tool for preventing miscon�gurations when
developers update code but don’t update related con�g-
uration �les. The tool uses association rule mining, but
developers struggled to interpret this output, so instead
the tool presents concrete explanations and examples
from prior code commits. In general we accepted any
explanation provided, including anecdotal, intuitive, or
empirical evidence. Of the 69 HL-Tool papers, 14.5% (10)
motivate the user-facing output and the remaining 85.5%
(59) provide no justi�cation.

Q5: Does the paper design user-facing compo-
nents? (“How”) (Yes/No)

This question stretches the expectations of systems
research, yet we found that several papers dedicate signif-
icant attention to explaining how an e�ective visualiza-
tion could be implemented, by proposing and/or imple-
menting visual idioms. For example, tpprof [44] discusses
how visually aligning network state heat-maps with net-
work state subsequences enables users to draw detailed
conclusions about network tra�c patterns. We accepted
any explanation of the visual parameters used to portray
the data. Of the 69 HL-Tool papers, 14.5% (10) provide an
explanation and 85.5% (59) provide no explanation.

4



3.1 Takeaways

Most HL-Tool research omits user-facing details.
Screenshots, descriptions, and designs are absent for the
majority of HL-Tool research beyond an initial problem
motivation. Q1 identi�ed a conservative lower bound
of 8.4% of papers presenting HL-Tools; a further 10.2%
of papers not included in subsequent survey questions
potentially include human-facing components, but this
wasn’t clear from the paper alone.
Most HL-Tool descriptions focus on “what” and
not “why”. Most research papers focus on making
a HL-Tool a reality, under the assumption that outputs
can be made useful for users. Though they may provide
screenshots and descriptions of what is provided as out-
put (Q2, Q3), information is often missing about why the
data is needed and how it maps to users’ tasks (Q4).
Industry papers are more user-centric. Of the 69
HL-Tool papers, 32 were published by industrial research
groups. These papers had signi�cantly higher focus on
user-facing details: 47% provide screenshots (Q2); 50%
explain the user-facing output (Q3); and 19% motivate
the user-facing output and design user-facing compo-
nents(Q4, Q5). We expect that industrial researchers more
directly draw from practical evidence and needs.
HL-Tools are Datacenter-centric. Several common
themes emerge when we stratify our survey results by
key topics. We observe that HL-Tools often target dat-
acenters and clouds, they operate at the network and
application level, and common challenges include moni-
toring, debugging, analysis and con�guration. The preva-
lence of HL-Tools in these areas is likely due to increased
complexity, “always-on” systems, and a need to touch
live systems when investigating problems.
HL-Tools are on the rise. The number of HL-Tool
papers published increases each year: 4.2% (10) in 2017;
5.1% (13) in 2018; 8.4% (19) in 2019; and 6.9% (27) in 2020.
We attribute this growth to a continuing shift in software
engineering practices towards a tighter integration of
development and operations and larger, continuously-
deployed systems.
Multi-modal Data is Commonplace. Combining
data sources is commonplace; e.g. debugging, perfor-
mance optimization, and con�guration research often
ties runtime measurements back to source code and use
paths and walks through source code as data abstrac-
tions [22, 45]. Change over time is commonplace due
to code changes, workload changes, and self-adaptation;
di�erencing and comparison are common task abstrac-
tions. Many HL-Tools today remain myopic, yet live in
a broader ecosystem; combining tools or relating infor-
mation between tools remains an open challenge [1, 16].
We also found that bug-localization work [32] whilst

repeatedly identifying the importance of an end-users
interaction rarely addressed how this could be achieved.
These are all compelling future directions for HL-
Tool visualization research.

4 Closing the loop
Our goal with this paper is to nudge researchers towards
more exposition of the human-facing components of
their HL-Tools. In this section, we propose a concrete
checklist for researchers to aid this task. The philosophy
of our checklist is to overshare. We request only the
details, and not qualitative arguments defending choices.
1. Explain the human user’s role. State that a user is

required for any part of the tool, even if: (1) it’s o� the
critical path; (2) user interaction can be outsourced to
some other system; or (3) it requires no changes from
prior tools. If the work is not human-in-the-loop, but
prior or related work is, state this distinction. If human
users motivate the work (introduction, motivation), then
clarify this role later (design, implementation).
2. Include a screenshot. State whether a visualization

was implemented. If so, screenshots contextualize the
work for all audiences and reduce the burden on textual
descriptions. If space is a concern, defer to an appendix
or link to examples in a webpage or repository. If screen-
shots aren’t possible (e.g. for privacy concerns) consider
a stylized mock-up.
3. Describe the user-facing output. Not all readers are

domain experts, yet assuming knowledge was a common
pitfall in our survey. Describe the data types output by
the tool and the outside data sources required to use the
tool (e.g. the source code base). Highlight di�erences be-
tween this work and prior or related work, such as subtle
changes or additions to the output data. Avoid only an ab-
stract speci�cation: if a tool is designed to be �exible (e.g.
“Dapper supports a map of key-value annotations” [40])
then describe the common uses (“Programmers tend to
use application-speci�c annotations as a kind of distributed
debug log �le” ), the scale of the output (“70% of all Dap-
per spans and 90% of all Dapper traces have at least one
application-speci�ed annotation” ), and expected outliers
(“In many of the larger systems at Google, it is not uncom-
mon to �nd traces with thousands of spans” ).
4. Motivate the output from the user’s perspective. Ex-

plain why the tool’s output was the ‘right’ output for the
human user. This justi�cation can be anecdotal, intuition,
or empirical evidence. In many cases the output may al-
ready be justi�ed by prior work, though this should be
revisited for changes or additions to the user-facing out-
put. If possible, decouple the justi�cation from technical
limitations of the tool.

5. Explain how you built it. If a visualization was imple-
mented, describe any ideas or intuitions that went into
it, such as visual motifs that users found compelling, or

5



established visualization design patterns that could be
leveraged. Conversely, if the visualization was apparently
trivial to implement, say so.

References
[1] D. Ardelean, A. Diwan, and C. Erdman. Performance

analysis of cloud applications. In 15th {USENIX}
Symposium on Networked Systems Design and Im-
plementation ({NSDI} 18), pages 405–417, 2018.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using magpie for request extraction and workload
modelling. In OSDI, volume 4, pages 18–18, 2004.

[3] I. Beschastnikh, P. Liu, A. Xing, P. Wang, Y. Brun,
and M. D. Ernst. Visualizing distributed system exe-
cutions. ACM Transactions on Software Engineering
and Methodology (TOSEM), 29(2):1–38, 2020.

[4] The BioViz Interest Group. Retrieved January 2021
from http://biovis.net/.

[5] J. C. De Kergommeaux, B. Stein, and P.-E. Bernard.
Pajé, an interactive visualization tool for tuning
multi-threaded parallel applications. Parallel Com-
puting, 26(10):1253–1274, 2000.

[6] S. Devkota, P. Aschwanden, A. Kunen, M. Legendre,
and K. E. Isaacs. Ccnav: Understanding compiler
optimizations in binary code. IEEE transactions on
visualization and computer graphics, 2020.

[7] A. Dhekne, A. Chakraborty, K. Sundaresan, and
S. Rangarajan. Trackio: tracking �rst responders
inside-out. In 16th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
19), pages 751–764, 2019.

[8] R. Fonseca, M. J. Freedman, and G. Porter. Experi-
ences with tracing causality in networked services.
INM/WREN, 10(10), 2010.

[9] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker.
X-trace: A pervasive network tracing framework.
In 4th {USENIX} Symposium on Networked Systems
Design & Implementation ({NSDI} 07), 2007.

[10] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pan-
choli, and C. Delimitrou. Seer: Leveraging big data
to navigate the complexity of performance debug-
ging in cloud microservices. In Proceedings of the
Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, pages 19–33, 2019.

[11] S. Grant, H. Cech, and I. Beschastnikh. Inferring and
asserting distributed system invariants. In Proceed-
ings of the 40th International Conference on Software
Engineering, pages 1149–1159, 2018.

[12] K. E. Isaacs and T. Gamblin. Preserving command
line work�ow for a package management system
using ascii dag visualization. IEEE transactions on vi-
sualization and computer graphics, 25(9):2804–2820,
2018.

[13] K. E. Isaacs, A. Giménez, I. Jusu�, T. Gamblin,
A. Bhatele, M. Schulz, B. Hamann, and P.-T. Bre-
mer. State of the art of performance visualization.
In EuroVis (STARs), 2014.

[14] Jaeger: Open Source, End-to-End Distributed Trac-
ing. Retrieved January 2021 from https://www.
jaegertracing.io/.

[15] S. K. R. Kakarla, A. Tang, R. Beckett, K. Jayaraman,
T. Millstein, Y. Tamir, and G. Varghese. Finding
network miscon�gurations by automatic template
inference. In 17th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
20), pages 999–1013, 2020.

[16] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa,
J. O’Neill, K. W. Ong, B. Schaller, P. Shan, B. Vis-
comi, et al. Canopy: An end-to-end performance
tracing and analysis system. In Proceedings of the
26th Symposium on Operating Systems Principles,
pages 34–50, 2017.

[17] J. Kehrer and H. Hauser. Visualization and visual
analysis of multifaceted scienti�c data: A survey.
IEEE Transactions on Visualization and Computer
Graphics, 19(3):495–513, 2012.

[18] Y. Kim, J. Kim, H. Jeon, Y.-H. Kim, H. Song, B. Kim,
and J. Seo. Githru: Visual analytics for understand-
ing software development history through git meta-
data analysis. arXiv preprint arXiv:2009.03115, 2020.

[19] Z. Li, H. Menon, D. Maljovec, Y. Livnat, S. Liu,
K. Mohror, P.-T. Bremer, and V. Pascucci. Spotsdc:
Revealing the silent data corruption propagation
in high-performance computing systems. IEEE
Transactions on Visualization and Computer Graph-
ics, 2020.

[20] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pas-
cucci. Visualizing high-dimensional data: Advances
in the past decade. IEEE Transactions on Visualiza-
tion and Computer Graphics, 23(3):1249–1268, 2016.

[21] D. Luu. A simple way to get more value from
tracing. Retrieved February 2021 from https:
//danluu.com/tracing-analytics/.

[22] J. Mace, R. Roelke, and R. Fonseca. Pivot Tracing:
Dynamic Causal Monitoring for Distributed Sys-
tems. In 25th ACM Symposium on Operating Systems
Principles (SOSP’15), 2015.

6

http://biovis.net/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://danluu.com/tracing-analytics/
https://danluu.com/tracing-analytics/


[23] S. Mehta, R. Bhagwan, R. Kumar, C. Bansal, C. Mad-
dila, B. Ashok, S. Asthana, C. Bird, and A. Kumar.
Rex: Preventing bugs and miscon�guration in large
services using correlated change analysis. In 17th
{USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 20), pages 435–
448, 2020.

[24] H. Mumtaz, S. Latif, F. Beck, and D. Weiskopf. Explo-
ranative code quality documents. IEEE transactions
on visualization and computer graphics, 26(1):1129–
1139, 2019.

[25] T. Munzner. Visualization analysis and design. CRC
press, 2014.

[26] H. T. P. Nguyen, A. Bhatele, N. Jain, S. Kesavan,
H. Bhatia, T. Gamblin, K.-L. Ma, and P.-T. Bremer.
Visualizing hierarchical performance pro�les of par-
allel codes using call�ow. IEEE transactions on visu-
alization and computer graphics, 2019.

[27] S. I. O’Donoghue, B. F. Baldi, S. J. Clark, A. E. Dar-
ling, J. M. Hogan, S. Kaur, L. Maier-Hein, D. J. Mc-
Carthy, W. J. Moore, E. Stenau, et al. Visualization
of biomedical data. Annual Review of Biomedical
Data Science, 1:275–304, 2018.

[28] F.-G. Ottogalli, C. Labbé, V. Olive,
B. de Oliveira Stein, J. C. de Kergommeaux,
and J.-M. Vincent. Visualization of distributed
applications for performance debugging. In
International conference on computational science,
pages 831–840. Springer, 2001.

[29] G. A. Pavlopoulos, D. Malliarakis, N. Papanikolaou,
T. Theodosiou, A. J. Enright, and I. Iliopoulos. Visu-
alizing genome and systems biology: technologies,
tools, implementation techniques and trends, past,
present and future. Gigascience, 4(1):s13742–015,
2015.

[30] B. Preim and C. P. Botha. Visual computing
for medicine: theory, algorithms, and applications.
Newnes, 2013.

[31] Prometheus - Monitoring System and Time-Series
Database. Retrieved January 2021 from https://
prometheus.io/.

[32] F. Ru�y, T. Wang, and A. Sivaraman. Gauntlet: Find-
ing bugs in compilers for programmable packet pro-
cessing. In 14th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 20),
pages 683–699, 2020.

[33] R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R.
Ganger. So, you want to trace your distributed
system? key design insights from years of practi-
cal experience. Parallel Data Lab., Carnegie Mellon
Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-PDL, 14,
2014.

[34] R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman,
R. Fonseca, and G. R. Ganger. Principled work�ow-
centric tracing of distributed systems. In Proceed-
ings of the Seventh ACM Symposium on Cloud Com-
puting, pages 401–414, 2016.

[35] R. R. Sambasivan, I. Shafer, M. L. Mazurek, and G. R.
Ganger. Visualizing request-�ow comparison to aid
performance diagnosis in distributed systems. IEEE
transactions on visualization and computer graphics,
19(12):2466–2475, 2013.

[36] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Kre-
vat, S. Whitman, M. Stroucken, W. Wang, L. Xu, and
G. R. Ganger. Diagnosing performance changes by
comparing request �ows. In NSDI, volume 5, pages
1–1, 2011.

[37] A. Sarikaya, M. Correll, L. Bartram, M. Tory, and
D. Fisher. What do we talk about when we talk
about dashboards? IEEE transactions on visualiza-
tion and computer graphics, 25(1):682–692, 2018.

[38] Y. Shkuro. A Picture is Worth a 1,000
Traces. Retrieved February 2021 from
https://www.shkuro.com/talks/2019-11-18-
a-picture-is-worth-a-thousand-traces/.

[39] C. Shridharan. Distributed Tracing – we’ve
been doing it wrong. Retrieved February 2021
from https://copyconstruct.medium.com/
distributed-tracing-weve-been-doing-it-
wrong-39fc92a857df.

[40] B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed sys-
tems tracing infrastructure. 2010.

[41] J. Wang, S. Hazarika, C. Li, and H.-W. Shen. Vi-
sualization and visual analysis of ensemble data:
A survey. IEEE Transactions on Visualization and
Computer Graphics, 25(9):2853–2872, 2018.

[42] K. Williams, A. Bigelow, and K. Isaacs. Visualiz-
ing a moving target: A design study on task paral-
lel programs in the presence of evolving data and
concerns. IEEE transactions on visualization and
computer graphics, 26(1):1118–1128, 2019.

7

https://prometheus.io/
https://prometheus.io/
https://www.shkuro.com/talks/2019-11-18-a-picture-is-worth-a-thousand-traces/
https://www.shkuro.com/talks/2019-11-18-a-picture-is-worth-a-thousand-traces/
https://copyconstruct.medium.com/distributed-tracing-weve-been-doing-it-wrong-39fc92a857df
https://copyconstruct.medium.com/distributed-tracing-weve-been-doing-it-wrong-39fc92a857df
https://copyconstruct.medium.com/distributed-tracing-weve-been-doing-it-wrong-39fc92a857df


[43] K. Xu, Y. Wang, L. Yang, Y. Wang, B. Qiao, S. Qin,
Y. Xu, H. Zhang, and H. Qu. Clouddet: Interactive
visual analysis of anomalous performances in cloud
computing systems. IEEE transactions on visualiza-
tion and computer graphics, 26(1):1107–1117, 2019.

[44] N. Yaseen, J. Sonchack, and V. Liu. tpprof: A network
tra�c pattern pro�ler. In 17th {USENIX} Sympo-
sium on Networked Systems Design and Implemen-
tation ({NSDI} 20), pages 1015–1030, 2020.

[45] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan.
Pensieve: Non-intrusive failure reproduction for
distributed systems using the event chaining ap-
proach. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 19–33, 2017.

[46] Zipkin: A Distributed Tracing System. Retrieved
January 2021 from http://zipkin.io/.

8

http://zipkin.io/

	Introduction
	Motivation
	HL-Tools: Human-in-the-Loop Tools
	Opportunities

	Survey of HL-Tools
	Takeaways

	Closing the loop

